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LETTER TO THE EDITOR 

General solution for a class of diffraction problems 

A V Osipov 
Radiophysics Deparhneng Instilute of Physics, The St. Petersbug State University, 
Ulianovskaya 1-1. St. Petersburg, Petmdvorets 198904, Russia 

Received 19 August 1992 

Abstract. Using a special mathematical technique plevously developed by Malyazhinets. the 
general solution of two-dimensional plane-wave diffraction problems in an angular region of any 
angle with boundary mnditions containing spatial derivatives of arbitrary orders is conslructed. 

Mathematical theory of diffraction of waves by a wedge and similar structures such as 
a half-plane or a wedgeliie hollow is widely used for studying a number of important 
problems in acoustics and electrodynamics connected with radiation and scattering from 
complicated targets, propagation over terrain relief and around artifical screens and barrim, 
etc. A broad spectrum of canonical problems for the simplest forms of boundary conditions 
(Dirichlet and Neumann) has been considered already at the beginning of this century in 
the classical works of Poincar6, Sommerfeld, Macdonald et a1 . It proves to be much more 
difficult to generalize these solutions to cases in which the boundaries of the region do not 
reflect perfectly and have absorbing or guiding properties. Methods based on the Wiener- 
Hopf technique (Noble 1958) are capable of giving elegant and efficient solutions to several 
important and interesting problems (for recent achievements see, for example, Rawlins 
1976, Rawlins and Williams 1981, Abrahams and Wickham 1990). Unfortunately, they 
are fundamentally restricted to structures with rectangular geometries, such as half-planes 
and their junctions at right angles. A special mathematical technique has been developed 
by Malyuzhinets (1958a) to solve the canonical problem for an arbitmry-angle impedance 
wedge. 

In the most general case, the properties of any plane surface r can be modelled by 
means of boundary conditions containing spatial high-order derivatives (Weinstein 1969) 

where x and y are the coordinates, tangent and normal to the boundary, respectively, 
k denotes the wave number in the upper isotropic homogeneous half-space, u(x. y) is a 
scalar function representing the wave field in the half space, A, B are ordinary differential 
operators of even orders with constant coefficients. Using boundary conditions (1). one 
can describe, for example, electromagnetic scattering from bodies coated with dielectric 
materials (Weinstein 1969). anomalies of geomagnetic variations caused by underlying 
Earth's layers (Price 1949), radiation and diffraction of acoustic waves by thin elastic plates 
in fluids (Brechovskich 1973). 

During the last three decades, starting from the work of Malyuzbinets (1958b) and Lamb 
(1959) on the diffraction of the sound by a thin elastic half-plane, considerable attention has 
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been attracted to difhaction problems for wedge-like structures with high-order boundary 
conditions but all the solutions presented in the literature are concerned with either particular 
forms of the boundary conditions (Malyuzhinets and Tuzhilin 1970, Morgan and Karp 1974, 
Bernard 1987) or strllctures having recbgular geometry (Kouzov 1963, Belinskii etal 1973, 
Volakis and Senior 1987, Rojas eta! 1991, Ricoy and Volakis 1992, Senior 1993). 

The aim of this letter is to construct the general solution for two-dimensional plane wave 
diffraction problems in an angular region of any angle with boundq conditions taken in 
their general form (1). A technique is employed which has been previously proposed 
by Malyuzhinets (1958a,b,c). Mathematically, there is no essential difference between two- 
dimensional problems of acoustics and electrodynamics; therefore, a unified consideration of 
both cases is given below. A time dependence is understood and supressed throughout. 

(0 < Q 4 n) with boundary conditions of arbitrary orders A'* of type (1) 
Let us consider the diffraction of a plane wave in an angular region Iu,I < 

i*ul*.$ = 0 (2) 

where rt signs correspond to the upper (v, = Q) and lower (v, = -a) faces of the region, 
respectively. In the polar coordinate system (r, u,), the boundary condition operators 2, 
can be expressed as 

where and & are assumed to be ordinary differential operators of arbitrary even 
orders with arbitrary constant coefficients. The total field u(r, v,) must satisfy the Helmholtz 
equation, the edge conditions and the proper conditions at infinity. 

According to Malyuzhinets' method, we represent the solution of the problem in the 
form of Sommerfeld's integral 

where the contour y looks like two loops in the complex a plane (Malyuzhinets 1958a). 
To meet the conditions at the edge and at infinity, S(a) must be analytical inside the loops, 
have a simple pole with a unit residue at a = m, and be limited at the infinity point a = CO. 

From boundary conditions (Z), using Malyuzhinets' theorem (19584, we obtain a system 
of functional equations 

N* 

n=l 
l*(a)~(a i a) - I + ( - ~ ) S ( - O  a) = Zsina C C:COS"-' LI (3) 

which is completely equivalent to the boundary conditions and contains a set of arbitrary 
constants C,'. Variable coefficients l&) in system (3) (i.e. symbols of the boundary 
condition operators), 

&(a) = L*(-ikcosa, -iksina) 

are polynomials of sine. Zeros of these functions from the strip 1 Real -= n/Z 

a=re,i n = l , 2 ,  ..., N+ 
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can be interpreted as complex Brewster angles of the wedge boundaries, i.e. the angles at 
which the Fresnel reflection coefficients vanish. 

To solve system (3). it is convenient to introduce an auxiliary function Y(a), analytical 
in the ship IReal < Q, which is a partial solution of the corresponding homogeneous 
system (Malyuzhinets 1958a). This solution can be constructed via the Fourier transform 
and expressed as a combination of special Malyuzhinets functions @&) 

?r 5 
N- n (**(a - Q + - s,p;)+e(a - Q - 5 2 +s;e;)) 

"=I 

where s: = sign(Re e:), n = 1,2, . . . , N+. 
Then the substitution S(a)  = Y (a):@) reduces system (3) to 

with constant coefficients. 
The general solution of system (4)'must consist of 
(i) a meromorphic solution of the corresponding homogeneous system with the unit 

residue at a point (Y = a, 

well known from sommerfeld's solutions for a perfectly reflecting wedge; 
( i)  entire solutions of the homogeneous system (Tuzhilin 1970) - 

M 
QM((Y)  wm cos(pm((Y - a)) . 

m 5 l  

(iii) a partial solution of non-homogeneous system (4) (easily obtainable via Fourier 
transfonn) 

where 
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Thus, the general solution of the initial system (3) which has the proper residue at (Y = % 
can be written in the form 

Note that the solution obtained contains a set of arbitrary constants C:, C., U,,,. By 
matching them, we can ensure the belonging of S@) to the class of analytical functions 
which has been described in the statement of the diffraction problem. Firstly, S(a)  is a 
meromorphic function of (Y and all the poles of the function which can lead to a violation of 
the condition at r = CO must be forbidden. It gives a subset of conditions on the unknown 
coefficients 

So, if A+ + A- 2 3, then solution (5) gets unbounded at a point (Y = 03. In this case, 
it is necessary to add to (6) a second subset of conditions following from conditions of 
cancellation for a few first terms in expansion of S(u) near (Y = 00: 

A+ + A- - 1 
m = 1 , 2  ,...,[ ] 

where square brackets mean the entire part of a quantity. Note that formulae (7) do not 
contain coefficients C. and U, because in this case UN@) = 1 and Q N - ~ ( o ~ )  = 0 to 
guarantee the boundedness of S((Y). 

Expression (5) completed by equations (6) and (7) describes the general solution of the 
initial diffraction problem, satisfying all the requirements (conditions at edge and r = CO) 
which are usually imposed on solutions in diffraction theory. But the solution obtained is 
not unique because the total number of equations (6) and (7) is still less then thc number of 
the unknown constants in representation (5). Similar facts are known to appear without fail 
when the order of boundary-condition operators exceeds that of the. Helmholtz equation. A 
more detailed analysis shows that the number of undefined constants in the general solution 
is directly expressed through the orders of boundary condition operators 

K = 4(N+ + N- - 1) 
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and does not depend on the values of the parameters AA, i.e. on how the roots of functions 
&(U) are located on the complex LY plane. This result coincides exactly with that obtained 
by Kouzov and his CO-authers (Kouzov 1963, Belinskii et a1 1973) for rectangular structures, 
using the Wiener-Hopf mathematical technique. 

To extract a unique solution, it is necessary to impose a set of additional linearly 
independent conditions which describe in more detail the properties of the wave field near 
the irregularity point r = 0 where boundary conditions (2) containing spatial high-order 
derivatives are not applicable. There exist various ways of formulating these conditions and 
the first of them is to use the so-called ‘boundary-contact conditions’ that prescribe certain 
relations between the wave field and its derivatives at a singular point (Kouzov 1963): 

&u+R;u=o n = 1 , 2 ,  ..., K 

where en, m = 1,2, are polynomials. This approach is very useful in acoustics in solving 
problems of sound diffraction by comer junctions of thin elastic plates described classically 
(& = 5,K = 4) (Malyuzhinets 1958b, Lamb 1959, Kouzov 1963, Malyuzhinets and 
Tuzhilin 1970, Belinskii et nl 1973) because the required first four derivatives, 

have a clear physical meaning, expressing plate displacements, angles between vibrating 
plates, rotatory moments of plates, and forces acting on plates, respectively. Consequently, 
for this class of problems the boundary-contact conditions can be formulated in advance, 
corresponding to the kinematic and dynamic conditions that characterize the junction of the 
plates (free edges, rigidly tixed edges, hinge joint etc). 

In electrodynamics, the use of conditions (8) seems to be not so convenient, due to the 
absence of any physical interpretation for quantities involved in the case of K > 2. To 
overcome these difficulties, a different type of the additional conditions has been proposed 
recently @coy and Volakis 1992, Osipov 1992), based on certain relationships between the 
constants in the general solution and the coefficients in modal representations of the wave 
field. 

Once the unknown constants have been determined, the solution obtained can be 
efficiently used in applied calculations, because the solution contains only well known 
special Malyuzhinets functions @&) (see, for example, (Osipov 199Oa)) and is expressed 
in terms of the Sommerfeld integral, which allows both analytical and numerical methods 
(Osipov 199Ob,c, Osipov 1991). 

Applications of the solution presented to various problems of acoustics and 
electrodynamics will be the subject of the forthcoming publications. 
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